Title: Different fixational eye movements mediate the prevention and the reversal of visual fading Running title: Fading prevention by fixational eye movements
نویسندگان
چکیده
Fixational eye movements (FEMs; including microsaccades, drift and tremor) are thought to improve visibility during fixation by thwarting neural adaptation to unchanging stimuli, but how the different FEM types influence this process is a matter of debate. Attempts to answer this question have been hampered by the failure to distinguish between the prevention of fading (where fading is blocked before it happens in the first place) and the reversal of fading (where vision is restored after fading has already occurred). Because fading during fixation is a detriment to clear vision, the prevention of fading --which avoids visual degradation before it happens-is a more desirable scenario than improving visibility after fading has occurred. Yet, previous studies have not examined the role of FEMs in the prevention of fading, but have focused on visual restoration instead. Here we set out to determine the differential contributions and efficacies of microsaccades and drift to preventing fading in human vision. Our results indicate that both microsaccades and drift mediate the prevention of visual fading. We also found that drift is a potentially larger contributor to preventing fading than microsaccades, although microsaccades are more effective than drift. Microsaccades moreover prevented foveal and peripheral fading in an equivalent fashion, and their efficacy was independent of their size, number, and direction. Our data also suggest that faster drift may prevent fading better than slower drift. These findings may help to reconcile the longstanding controversy concerning the comparative roles of microsaccades and drift in visibility during fixation.
منابع مشابه
Fixational eye movements across vertebrates: comparative dynamics, physiology, and perception.
During visual fixation, human eyes are never still. Instead, they constantly produce involuntary "fixational eye movements." Fixational eye movements overcome neural adaptation and prevent visual fading: thus they are an important tool to understand how the brain makes the environment visible. The last decade has seen a growing interest in the analysis of fixational eye movements in humans and ...
متن کاملAbnormal Fixational Eye Movements in Amblyopia
PURPOSE Fixational saccades shift the foveal image to counteract visual fading related to neural adaptation. Drifts are slow eye movements between two adjacent fixational saccades. We quantified fixational saccades and asked whether their changes could be attributed to pathologic drifts seen in amblyopia, one of the most common causes of blindness in childhood. METHODS Thirty-six pediatric su...
متن کاملFixational saccades are more disconjugate in adults than in children
PURPOSE Fixational eye movements are of particular interest for three reasons. They are critical for preventing visual fading and enhancing visual perception; their disconjugacy allows scanning in three dimensions, and their neural correlates span through the cortico-striatal, striato-collicular and brainstem networks. Fixational eye movements are altered in various pediatric ophthalmologic and...
متن کاملFixational Eye Movements in the Earliest Stage of Metazoan Evolution
All known photoreceptor cells adapt to constant light stimuli, fading the retinal image when exposed to an immobile visual scene. Counter strategies are therefore necessary to prevent blindness, and in mammals this is accomplished by fixational eye movements. Cubomedusae occupy a key position for understanding the evolution of complex visual systems and their eyes are assumedly subject to the s...
متن کاملMicrosaccades Counteract Visual Fading during Fixation
Our eyes move continually, even while we fixate our gaze on an object. If fixational eye movements are counteracted, our perception of stationary objects fades completely, due to neural adaptation. Some studies have suggested that fixational microsaccades refresh retinal images, thereby preventing adaptation and fading. However, other studies disagree, and so the role of microsaccades remains u...
متن کامل